

Thomas A. Moorcroft, DO

Medical Director - Origins Of Health

Creator - Lyme Disease Practitioner Certification Program

www.OriginsOfHealth.com/Connect

Learning Objectives

To develop an understanding of the frequency of tick-borne co-infection and the increased risk of patient co-infection from tick bite, including how this impacts presentation of symptoms and laboratory testing.

To develop an understanding of log and stationary bacterial growth as well as other bacterial persister forms and how each phase requires different treatment approaches.

To develop an understanding of the most up to date, evidence-based growing, stationary and persister co-infection treatments.

**TickEncounter Resource Center | Ixodes scapularis (Blacklegged ticks or Deer ticks)

Lyme disease, Babesiosis, Anaplasmosis, B. miyamotoi, Powassan virus

Contents lists available at ScienceDirect

Ticks and Tick-borne Diseases

journal homepage: www.elsevier.com/locate/ttbdis

Microbiome analysis of *Ixodes scapularis* ticks from New York and Connecticut

Rafal Tokarz^{a,*}, Teresa Tagliafierro^a, Stephen Sameroff^a, D. Moses Cucura^b, Alexandra Oleynik^a, Xiaoyu Che^a, Komal Jain^a, W. Ian Lipkin^a

^a Center for Infection and Immunity, Mailman School of Public Health, Columbia University, NY, United States

ARTICLE INFO

Keywords: Ticks Metagenomics High-throughput sequencing Borrelia Bartonella Lxodes scapularis

ABSTRACT

We employed high throughput sequencing to survey the microbiomes of *Ixodes scapularis* collected in New York and Connecticut. We examined 197 individual *I. scapularis* adults and pools from 132 adults and 197 nymphs. We detected *Borrelia burgdorferi* sensu stricto in 56.3% of individual ticks, *Anaplasma phagocytophilum* in 10.6%, *Borrelia miyamotoi* in 5%, *Babesia microti* in 7.6%, and Powassan virus in 3.6% We did not detect *Borrelia mayonii*, *Ehrlichia muris eauclairensis*, *Bartonella* spp. or pathogenic *Babesia* species other than *B. microti*. The most abundant bacterium (65%), and only rickettsial species identified, was the endosymbiont *Rickettsia buchneri*. A filarial nematode was found in 13.7% of adult ticks. Fourteen viruses were detected including South Bay virus (22%) and blacklegged tick phlebovirus 1 and 2 (73%). This study provides insight into the microbial diversity of *I. scapularis* in New York State and Connecticut.

Table 2 Prevalence of *I. scapularis*-associated microbes.

Agent	Prevalence (# of positive ticks)	
Bacteria		
Anaplasma phagocytophilum	10.6% (21)	
Borrelia burgdorferi s.s.	56.3% (111)	
Borrelia miyamotoi	5.07% (10)	
Rickettsia buchnerii	65.0% (128)	
Invertebrate		
Babesia microti [*]	8.6% (17)	
Babesia odocoilei [*]	8.6% (17)	
Ixodes scapularis nematode	13.7% (27)	
Virus		
Blacklegged tick phlebovirus	73.10% (144)	
BLTV-associated virus 1	5.10% (10)	
BLTV-associated virus 2	1% (2)	
Powassan virus	3.60% (7)	
South Bay virus	21.80% (43)	
Suffolk virus	9.60% (19)	

^b Division of Vector Control, Suffolk County Department of Public Works, Yaphank, NY, 11980, United States

Ticks and Tick-borne Diseases

Volume 10, Issue 2, February 2019, Pages 360-364

Original article

Regional prevalences of Borrelia burgdorferi, Borrelia bissettiae, and Bartonella henselae in Ixodes affinis, Ixodes pacificus and Ixodes scapularis in the USA

> Borrelia burgdorferi – 13.9% Bartonella henselae – 2.5%

N=929

In North Carolina (n=155)

Borrelia spp. - 63.2% and B. henselae - 10.3%

Classic Presentation

Early Localized Disease (days-weeks)

EM, Flu-like symptoms

Early Disseminated Disease (days-weeks)

- Neurologic, Cardiac, Ocular symptoms

Late Disease (months-years)

Arthritis, Neurologic

© 2023 Samara Health, LLC. All Rights Reserved

Thomas A. Moorcroft, DO

www.dermnet.com

Clinical Presentation

Joint & muscle pains

Brain fog

Numbness & Tingling

Dizziness +/- syncope

Heart palpitations

Shortness of breath

Gastrointestinal distress

- Chronic gastritis, duodenitis, colitis
- Multiple food allergies, Leaky gut

Clinical Presentation

International Journal of General Medicine

Dovepress

n access to scientific and medical research

ORIGINAL RESEARCH

Empirical validation of the Horowitz Multiple Systemic Infectious Disease Syndrome Questionnaire for suspected Lyme disease

This article was published in the following Dove Press journal: International Journal of General Medicine 4 September 2017 Number of times this article has been viewed

Maryalice Citera¹
Phyllis R Freeman²
Richard I Horowitz²

Department of Psychology, State
University of New York at New Paltz,
New Paltz, NY, Hudson Valley Healing
Arts Center, Hyde Park, NY, USA

Purpose: Lyme disease is spreading worldwide, with multiple Borrelia species causing a broad range of clinical symptoms that mimic other illnesses. A validated Lyme disease screening questionnaire would be clinically useful for both providers and patients. Three studies evaluated such a screening tool, namely the Horowitz Multiple Systemic Infectious Disease Syndrome (MSIDS) Questionnaire. The purpose was to see if the questionnaire could accurately distinguish between Lyme patients and healthy individuals.

Methods: Study 1 examined the construct validity of the scale examining its factor structure and reliability of the questionnaire among 537 individuals being treated for Lyme disease. Study 2 involved an online sample of 999 participants, who self-identified as either healthy (N=217) or suffering from Lyme now (N=782) who completed the Horowitz MSIDS Questionnaire (HMQ) along with an outdoor activity survey. We examined convergent validity among components of

Key indicators of Lyme

Migratory joint pain
Migratory nerve pain/paresthesias

Clinical Presentation

International Journal of General Medicine

Dovepress

en access to scientific and medical researc

ORIGINAL RESEARCH

Empirical validation of the Horowitz Multiple Systemic Infectious Disease Syndrome Questionnaire for suspected Lyme disease

This article was published in the following Dove Press journal: International Journal of General Medicine 4 September 2017 Number of times this article has been viewed

Maryalice Citera¹
Phyllis R Freeman²
Richard I Horowitz²

Department of Psychology, State
University of New York at New Paltz,
New Paltz, NY, Hudson Valley Healing
Arts Center, Hyde Park, NY, USA

Purpose: Lyme disease is spreading worldwide, with multiple Borrelia species causing a broad range of clinical symptoms that mimic other illnesses. A validated Lyme disease screening questionnaire would be clinically useful for both providers and patients. Three studies evaluated such a screening tool, namely the Horowitz Multiple Systemic Infectious Disease Syndrome (MSIDS) Questionnaire. The purpose was to see if the questionnaire could accurately distinguish between Lyme patients and healthy individuals.

Methods: Study 1 examined the construct validity of the scale examining its factor structure and reliability of the questionnaire among 537 individuals being treated for Lyme disease. Study 2 involved an online sample of 999 participants, who self-identified as either healthy (N=217) or suffering from Lyme now (N=782) who completed the Horowitz MSIDS Questionnaire (HMQ) along with an outdoor activity survey. We examined convergent validity among components of

Key indicators of Lyme

Migratory joint pain

Migratory nerve pain/paresthesias

Differential of migratory pain includes:

- Crohn's/IBD
- · Gonococcal arthritis
- Hepatitis A,B,C,D,E

Lyme in Children

About 50% presents as a GI complaint

- Isolated abdominal pain without clear etiology

Lyme in Children

About 50% presents as a GI complaint

Isolated abdominal pain without clear etiology

Neuropsychiatric presentations

- Acute behavioral changes
- Regression
- Tics
- PANS/PANDAS

Treatment Viewpoints

Single Antibiotic

- Doxycycline
- Cefuroxime
- Amoxicillin

Duration

• 10-21 days

Single course of tx

Persistence of *Borrelia burgdorferi* in Rhesus Macaques following Antibiotic Treatment of Disseminated Infection

Monica E. Embers^{1*}, Stephen W. Barthold⁴, Juan T. Borda², Lisa Bowers¹, Lara Doyle³, Emir Hodzic⁴, Mary B. Jacobs¹, Nicole R. Hasenkampf¹, Dale S. Martin¹, Sukanya Narasimhan⁵, Kathrine M. Phillippi-Falkenstein³, Jeanette E. Purcell^{3¤}, Marion S. Ratterree³, Mario T. Phillipp^{1*}

1 Divisions of Bacteriology & Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, Louisiana, United States of America, 2 Comparative Pathology, Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, Louisiana, United States of America, 3 Veterinary Medicine, Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, Louisiana, United States of America, 4 Center for Comparative Medicine, Schools of Medicine and Veterinary Medicine, University of California Davis, Davis, California, United States of America, 5 Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America

28 days oral = 0% cure

28 days IV + 56 days oral = 27% cure

RESEARCH ARTICLE

Variable manifestations, diverse seroreactivity and post-treatment persistence in non-human primates exposed to *Borrelia* burgdorferi by tick feeding

Monica E. Embers¹*, Nicole R. Hasenkampf¹, Mary B. Jacobs¹, Amanda C. Tardo¹, Lara A. Doyle-Meyers², Mario T. Philipp¹, Emir Hodzic³

Our results demonstrate **host-dependent signs of infection** and variation in antibody responses.

Persistence may not be reflected by maintenance of specific antibody production by the host

Evidence of persistent, intact, metabolically-active B. burgdorferi after antibiotic treatment of disseminated infection

Borrelia burgdorferi

Spirochete

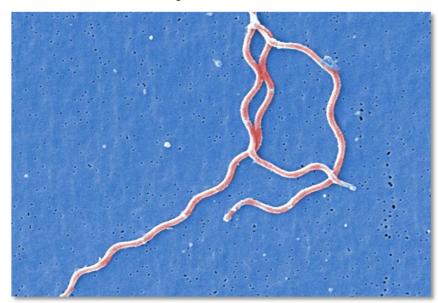
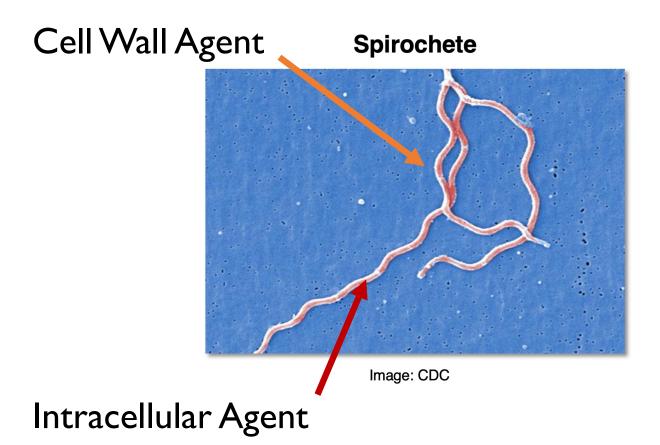



Image: CDC

Borrelia burgdorferi

Treatment Viewpoints

Multiple Antibiotics

- Cell wall agents
 - Penicillins
 - Cephalosporins
- Intracellular
 - Tetracyclines
 - Macrolides

Duration

6 weeks or longer

May require multiple courses of tx

Role of natural tx

Antibiotics: Sites of Activity

Cell wall	Intracellular
Amoxicillin	Clarithromycin
Amoxicillin-clavulanate	Azithromycin
Penicillin G	Tetracycline
Benzathine PCN	Doxycycline
Cefuroxime	Minocycline
Cefuroxime	Tigecycline
Cefdinir	Fluoroquinolones
Ceftriaxone	TMP/SMZ
Cefotaxime	Rifampin
Ceftibuten	Other Rifamycins
Aminoglycosides	
Vancomycin	

Start Mono therapy and treat for 4 weeks, then reassess

Intracellular antibiotic + Probiotic

Minocycline + Probiotic

Start Mono therapy and treat for 4 weeks, then reassess

Intracellular antibiotic + Probiotic

Minocycline + Probiotic

WHY A TETRACYCLINE?

Start Mono therapy and treat for 4 weeks, then reassess

Intracellular antibiotic + Probiotic

Minocycline + Probiotic

ALWAYS ASSESS & REASSESS!

Start Combo therapy and treat for 4 weeks, then reassess

Cell Wall + Intracellular antibiotic + Probiotic

Cefuroxime + Minocycline + Probiotic

Start Combo therapy and treat for 4 weeks, then reassess

Cell Wall + Intracellular antibiotic + Probiotic

Cefuroxime + Minocycline + Probiotic

ALWAYS ASSESS & REASSESS!

Dosing

Standard dosing for most medications

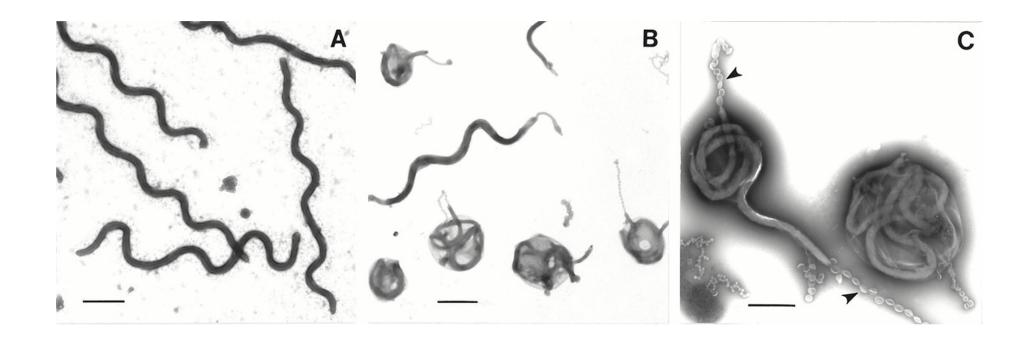
Dosing

Standard dosing for most medications

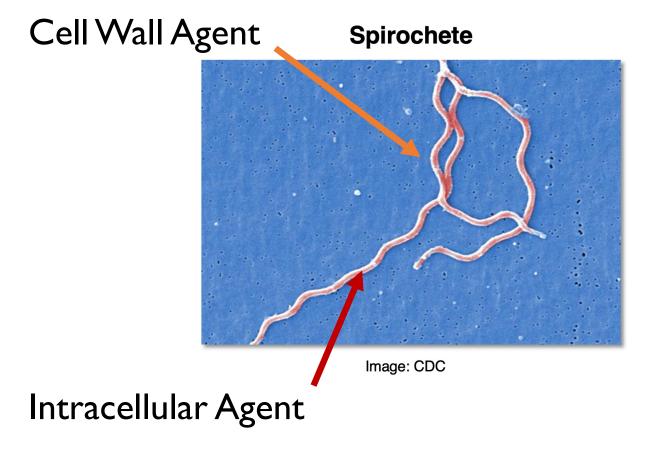
Azithromycin & Amoxicillin

• Typically at upper end of dose range

DISCOVERY MEDICINE


Medical Specialties Life Sciences Species and Cell Types Research Technology Therapeu and Healthcare Industry

Article Published in the Author Account of


Jie Feng

Stationary Phase Persister/Biofilm Microcolony of Borrelia burgdorferi Causes More Severe Disease in a Mouse Model of Lyme Arthritis: Implications for Understanding Persistence, Post-Treatment Lyme Disease Syndrome (PTLDS), and Treatment Failure

Borrelia Round Body or Cyst

Borrelia burgdorferi

Cyst/Round Body

Image: Bradford 2004

Antibiotics: Sites of Activity

Cell wall	Intracellular	Cyst
Amoxicillin Amoxicillin-clavulanate Penicillin G Benzathine PCN Cefuroxime Cefuroxime Cefdinir Ceftriaxone Cefotaxime Ceftibuten Aminoglycosides Vancomycin	Clarithromycin Azithromycin Tetracycline Doxycycline Minocycline Tigecycline Fluoroquinolones TMP/SMZ Rifampin Other Rifamycins	Metronidazole Tinidazole Hydroxychloroquine Tigecycline Daptomycin

Tinidazole 250mg BID x 3 consecutive days, 4 day break, repeat

- Can increase up to 750 TID prn
- I usually don't go above 500mg BID unless really making a difference

Tinidazole 250mg BID x 3 consecutive days, 4 day break, repeat

- Can increase up to 750 TID prn
- I usually don't go above 500mg BID unless really making a difference
- Bactericidal
- Inhibits DNA synthesis (first generation nitromidazole)
- No ETOH during or 3 days after possible Disulfiram reaction
 - Recommend avoiding 3 days prior to starting also
- Possible peripheral neuropathy (? more in metronidazole)
 - B complex

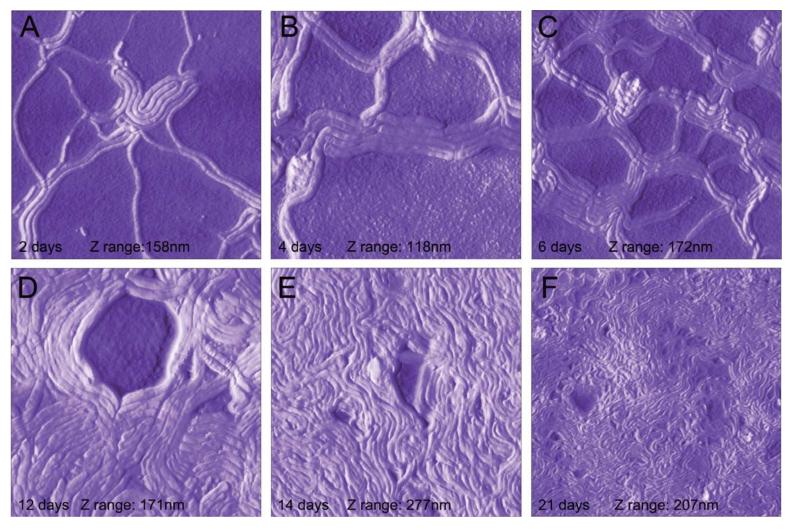
Metronidazole 500mg BID x 3 consecutive days, 4 day break, repeat

- Can increase up to 750mg BID prn
- I generally don't go higher

Carcinogenic in mice and rats

- Bactericidal
- Inhibits nucleic acid synthesis (first generation nitromidazole)
- No ETOH during or 14 days after possible Disulfiram reaction
 - Recommend avoiding 3 days prior to starting also
- Possible peripheral neuropathy (? more in metronidazole)
 - B complex

Hydroxychloroquine 200mg BID


- ? Round body coverage
- Alkalinize intracellular compartment
 - ? Augment effects of intracellular antibiotics

Hydroxychloroquine 200mg BID

- ? Round body coverage
- Alkalinize intracellular compartment
 - ? Augment effects of intracellular antibiotics

Grapefruit Seed Extract ???

Borrelia Biofilms

Biofilms

Liposomal treatments

- Liposomal Artemisinin
- Liposomal Botanical combination

Systemic Enzymes

- Nattokinase 100mg (2,000 FU) 1-2 capsules BID, away from food & other meds/supps
- Lumbrokinase 32mg (300,000 IU) I-2 capsules BID, away from food & other meds/supps
- Serrapeptase 60,000 SPU I-2 capsules BID, away from food & other meds/supps
- Combination enzymes

Biofilms

```
?? Stevia – Dr. Shapi – yes, Dr. Zhang - no
```

??Monolaurin – Goc 2015 – yes, Dr. Zhang - no

Essential oil study

?? Oil of Oregano

??Cinnamon

??Clove

Biofilms

Dapsone

Daptomycin IV

?? Disulfiram

??Azlocillin IV

Log Microcolony/Biofilm Borrelia burgdorferi Round body/Cyst Stationary **Planktonic** Spirochetal Other

Cryptolepis sanguinolenta**

Polygonum cuspidatum

Scutellaria baicalensis

Juglans nigra (Stationary, Not Growing)

Artemisia annua (Stationary, Not Growing)

Uncaria tomentosa (Stationary, Not Growing)

Cryptolepis is only herb or medication tested to eradicate B. burgdorferi stationary forms in subculture

Cryptolepis sanguinolenta**

Polygonum cuspidatum

Scutellaria baicalensis

Juglans nigra (Stationary, Not Growing)

Artemisia annua (Stationary, Not Growing)

Uncaria tomentosa (Stationary, Not Growing)

All of these herbs outperformed Doxycycline & Cefuroxime

Cryptolepis is only herb or medication tested to eradicate B. burgdorferi stationary forms in subculture

ORIGINAL RESEARCH

published: 21 February 2020 doi: 10.3389/fmed.2020.00006

Evaluation of Natural and Botanical Medicines for Activity Against Growing and Non-growing Forms of *B. burgdorferi*

Jie Feng 17, Jacob Leone 2, Sunjya Schweig 3* and Ying Zhang 1*

¹ Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States, ² FOCUS Health Group, Naturopathic, Novato, CA, United States, ³ California Center for Functional Medicine. Kensington, CA, United States

Little or NO Activity

Stevia rebaudiana

Andrographis paniculata

Grapefruit seed extract

Colloidal silver

Monolaurin

Antimicrobial peptide LL37

ORIGINAL RESEARCH

published: 21 February 2020 doi: 10.3389/fmed.2020.00006

Evaluation of Natural and Botanical Medicines for Activity Against Growing and Non-growing Forms of *B. burgdorferi*

Jie Feng 17, Jacob Leone 2, Sunjya Schweig 3* and Ying Zhang 1*

¹ Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States, ² FOCUS Health Group, Naturopathic, Novato, CA, United States, ³ California Center for Functional Medicine. Kensington, CA, United States

Not Good for Growing Borrelia

Artemisia annua

Juglans nigra

Uncaria tomentosa

ORIGINAL RESEARCH published: 21 February 2020 doi: 10.3389/fmed.2020.00006

(

Evaluation of Natural and Botanical Medicines for Activity Against Growing and Non-growing Forms of *B. burgdorferi*

Jie Feng 17, Jacob Leone 2, Sunjya Schweig 3* and Ying Zhang 1*

¹ Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States, ² FOCUS Health Group, Naturopathic, Novato, CA, United States, ³ California Center for Functional Medicine. Kensington, CA, United States

Not Good for Growing Borrelia

Artemisia annua

Juglans nigra

Uncaria tomentosa

Good for Stationary

• inhibits aldehyde dehydrogenase

- able to form disulfides with other thiol-bearing molecules
- "Potentially causes the inhibition of B. burgdorferi metabolism as the formation of mixed disulfides with metal ions would compete for the zinc and manganese cofactors that are crucial to the survival of B. burgdorferi"

Initially, Goal dose: 500mg daily x 6-12 weeks

Initially, Goal dose: 500mg daily x 6-12 weeks

Start at 250mg ½ tablet daily and increase every I-2 weeks as able

Initially, Goal dose: 500mg daily x 6-12 weeks

Start at 250mg 1/2 tablet daily and increase every 1-2 weeks as able

May need to go as low as 25mg every other day and titrate

Initially, Goal dose: 500mg daily x 6-12 weeks

Start at 250mg ½ tablet daily and increase every I-2 weeks as able

May need to go as low as 25mg every other day and titrate

Some patients benefit from enteric coating

Initially, Goal dose: 500mg daily x 6-12 weeks

Start at 250mg 1/2 tablet daily and increase every 1-2 weeks as able

May need to go as low as 25mg every other day and titrate

Some patients benefit from enteric coating

More recent clinical experience shows:

- Likely don't need more than 250mg daily
- Doses as low as 25mg a few times a week can be effective

No ETOH

Check LFTs regularly

- At least every 2 weeks initially
- More frequently prn

Liver support

- Liver support combinations
- RLA/ALA
- NAC

Neuropathy

Neuropathy

Monitor it closely

- If it starts, stop
- If it's full blown, stop
- B complex and GSH may help decrease risk

Neuropathy

Monitor it closely

- If it starts, stop
- If it's full blown, stop
- B complex and GSH may help decrease risk

May take I-2 months, rarely longer to recover

Anti-leprosy agent found to have anti-Borrelial activity

including biofilms

Anti-leprosy agent found to have anti-Borrelial activity

including biofilms

Protocol - Dapsone, Doxycycline, Rifampin, Methylene Blue,

Leucovorin, L-5-MTHF, liposomal glutathione, Probiotics.

Week I - Dapsone 25 mg I one time a day

Week 2 - Dapsone 25 mg I two times a day

Week 3 - Dapsone 25mg 2 in AM and 1 in PM

Week 4 - Dapsone 25mg 2 in AM and 2 in PM

Weeks 5-12 - Dapsone 100mg I two times a day

Week I - Dapsone 25 mg I one time a day

Week 2 - Dapsone 25 mg I two times a day

Week 3 - Dapsone 25mg 2 in AM and 1 in PM

Week 4 - Dapsone 25mg 2 in AM and 2 in PM

Weeks 5-12 - Dapsone 100mg I two times a day

I find the need to continue titrating and protocol at least 4 months

Check for G-6PD deficiency

Will lead to folate deficiency anemia

- Leucovorin & methylated folate in very high doses required
- Below methylated folate 30mg daily & leucovorin 25mg BID | see severe anemia

Frequently leads to methemoglobinemia

- Weekly CBCs & methemoglobin levels
- Methylene blue helps, but it still happens

B. miyamotoi

EM Rash
Meningoencephalitis
Hearing loss

B. miyamotoi

EM Rash
Meningoencephalitis
Hearing loss

Looks like Lyme + Anaplasma and/or Babesia

B. miyamotoi

EM Rash
Meningoencephalitis
Hearing loss

Looks like Lyme + Anaplasma and/or Babesia

Treatment?

• Like Lyme??

Babesiosis Symptoms

Fevers, chills

Sweats: day or night

Shortness of Breath

Air hunger

Rib pain

Sharp, shooting pains

Bone pain

Headache, especially Head Pressure

Babesiosis Symptoms

Myalgias, Arthralgia

Encephalopathy/Brain fog

Numbness & Tingling

Fatigue

Depression & Anxiety

Insomnia

Dysautonomia

Gastrointestinal symptoms

Babesiosis Treatment

Atovaquone + Azithromycin +/- TMP/SMZ

Atovaquone/Proguanil +/- macrolide

Clindamycin +/- Quinine

Babesiosis Treatment

Evidence of possible resistance in Babesia

- Should be using at minimum two drugs
- Possible role for triple drug protocols

Duration

• ? 4-5+ months

B. duncani Treatment

J Biol Chem. 2018 Dec 28;293(52):19974-19981. doi: 10.1074/jbc.AC118.005771. Epub 2018 Nov 21.

Establishment of a continuous *in vitro* culture of *Babesia duncani* in human erythrocytes reveals unusually high tolerance to recommended therapies.

Abraham A¹, Brasov I², Thekkiniath J¹, Kilian N¹, Lawres L¹, Gao R¹, DeBus K¹, He L³, Yu X⁴, Zhu G⁴, Graham MM⁵, Liu X⁵, Molestina R², Ben Mamoun C⁶.

Author information

- 1 From the Department of Internal Medicine, Section of Infectious Diseases, and.
- 2 BEI Resources, American Type Culture Collection, Manassas, Virginia 20110-2209.
- 3 the State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430079. China. and.
- 4 the Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77845.
- 5 the Department of Cell Biology and CCMI Electron Microscopy Core Facility, Yale School of Medicine, New Haven, Connecticut 06520.
- 6 From the Department of Internal Medicine, Section of Infectious Diseases, and choukri.benmamoun@yale.edu.

Abstract

Human babesiosis is an emerging tick-borne disease caused by apicomplexan parasites of the genus *Babesia* Clinical cases caused by *Babesia duncani* have been associated with high parasite burden, severe pathology, and death. In both mice and hamsters, the parasite causes uncontrolled fulminant infections, which ultimately lead to death. Resolving these infections requires knowledge of *B. duncani* biology.

"These data suggest that current practices are of limited effect in treating the disease"

B. duncani Treatment

ORIGINAL RESEARCH

published: 08 March 2021 doi: 10.3389/fcimb.2021.624745

Botanical Medicines Cryptolepis sanguinolenta, Artemisia annua, Scutellaria baicalensis, Polygonum cuspidatum, and Alchornea cordifolia Demonstrate Inhibitory Activity Against Babesia duncani

Yumin Zhang¹, Hector Alvarez-Manzo¹, Jacob Leone², Sunjya Schweig³ and Ying Zhang^{4*}

¹ Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States, ² FOCUS Health Group, Naturopathic, Novato, CA, United States, ³ California Center for Functional Medicine, Kensington, CA, United States, ⁴ State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China

B. duncani Treatment

TABLE 1 Evaluation of a panel of 46 herbal medicines at 0.01% (v/v) for inhibitory activity against *B. duncani* after 3 days of incubation.

Product Names	Plants	Inhibition (%)
Chinese Skullcap (90% EE)	Scutellaria baicalensis	84
Cryptolepis (90% EE)	Cryptolepis sanguinolenta	80
Cryptolepis (60% EE)	Cryptolepis sanguinolenta	70
Chinese Skullcap (60% EE)	Scutellaria baicalensis	68
Japanese knotweed (60% EE)	Polygonum cuspidatum	59
Sweet wormwood (30% EE)	Artemisia annua	58
Alchornea	Alchornea cordifolia	54
Japanese knotweed (90% EE)	Polygonum cuspidatum	42
Andrographis (90% EE)	Andrographis paniculata	37
Andrographis (60% EE)	Andrographis paniculata	36
Sweet wormwood (60% EE)	Artemisia annua	35
Andrographis (30% EE)	Andrographis paniculata	34
Cistus	Cistus incanus	34
Ashwagandha (30% EE)	Withania somnifera	33
Hemp oil	Cannabis sativa	26

Control - ethanol carrier at 30%, 60%, and 90%, did not show obvious inhibitory effect at up to 1% concentration.

- I. Atovaquone or Atovaquone/Proguanil
- 2. Artemisinin
- 3. Tafenoquine or Primaquine
- 4. Azithromycin
- 5. Systemic enzymes

Atovaquone 750mg/5ml

- 5ml BID
- May start as low as 1.5ml BID in very ill patients
- Take with fat to increase absorption from low 20% to high 40%

Atovaquone/Proguanil 250mg/100mg

- I tablet BID
- May work up to 3 tablets BID

Whole leaf artemisinin – 800-1000mg daily in divided doses

Liposomal artemisinin – 50mg capsules 2 BID 5 days/wk, 3wks/mo

• Studies revealing 4-5x increased absorbability

Whole leaf artemisinin – 800-1000mg daily in divided doses

Liposomal artemisinin – 50mg capsules 2 BID 5 days/wk, 3wks/mo

• Studies revealing 4-5x increased absorbability

Artesunate

- Availability
- Cost

Tafenoquine 150mg

- inhibits hematin polymerization, leading to parasite death
- 2 tablets once a week
- May need to start at ¼ of I tablet
- Reaches peak blood levels in 12 weeks (reportedly)

Tafenoquine 150mg

- inhibits hematin polymerization, leading to parasite death
- 2 tablets once a week
- May need to start at ¼ of I tablet
- Reaches peak blood levels in 12 weeks (reportedly)
- Some clinicians increase to 3-4 tablets weekly to bi-weekly**

Tafenoquine 150mg

- inhibits hematin polymerization, leading to parasite death
- 2 tablets once a week
- May need to start at ¼ of I tablet
- Reaches peak blood levels in 12 weeks (reportedly)
- Some clinicians increase to 3-4 tablets weekly to bi-weekly**
- Some clinicians have been using a loading dose of I tablet daily \times 3 days then I tablet weekly

Primaquine 26.3mg

- exact mechanism of action unknown; binds to and alters DNA
- Start I tablet daily, increase to 3 tablets daily over weeks
- Can be used but much more frequent dosing (shorter half-life)

Both have dose related methemoglobinemia

- Over 30mg daily of primaquine
- Over 300 mg of tafenoquine

Recommended to be on methylene blue when on higher doses**

Both should not be used in patients with G6PD deficiency with <70% activity

- Technically, Primaquine can be used in those with 30-70% activity and monitored very closely for hemolysis, though the risk-benefit likely isn't worth it.
- Tafenoquine for the radical cure and prevention of malaria: the importance of testing for G6PD deficiency
 - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7064913/

Then add:

- Azithromycin
- Systemic enzymes

Then add:

- Azithromycin
- Systemic enzymes

Then add:

- Azithromycin
- Systemic enzymes

OR

Is there a better order?

Clofazimine

Plus Atovaquone to treat B. microti

Clofazimine

Plus Atovaquone to treat B. microti

Binds to mycobacterial DNA, inhibiting growth

Dosing based upon Leprosy experience

Clofazimine

300mg qMonth plus 50mg daily x 6-12 months

VS

100-200mg daily until controlled, then 100mg daily

Bartonella Symptoms

Myalgias, Arthralgias

Headache

Fatigue, Decreased stamina

Tremors, Transient focal muscle fasciculation

Migratory peripheral neuropathy

Foot/Heel pain

Alcohol intolerance

Bartonella Symptoms

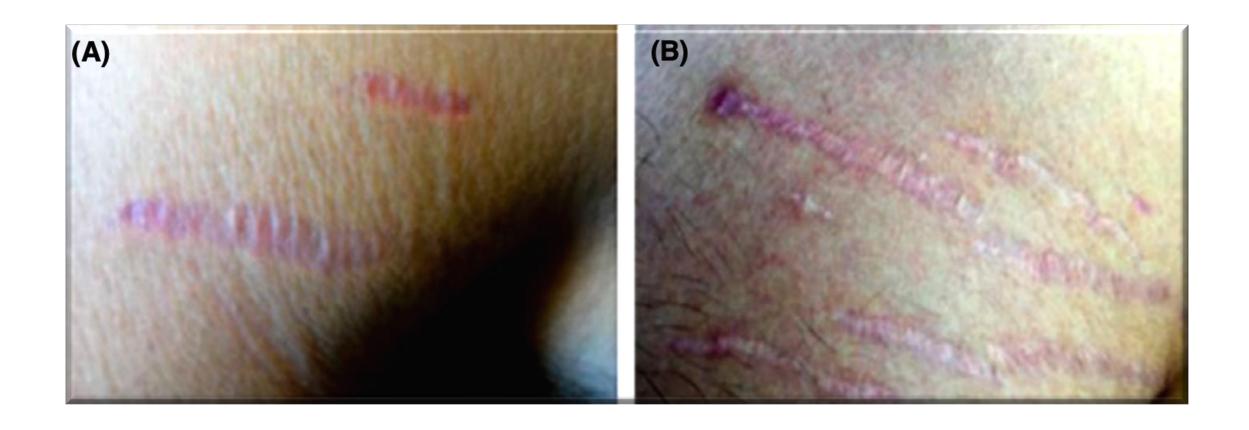
Mild Anxiety/Depression

OCD-type symptoms

Rage

Acute changes in personality or Regression

• Especially in kids


Unilateral symptoms

Oddities

Tic disorders

PANS/ PANDAS

Bartonella Striae?

Bartonella Pearls

Things we see, but to date have not been scientifically confirmed

Bartonella striae should blanch

Other striae should not

Lymph nodes swollen

• Lyme has lymphadenitis without swelling

Subcutaneous nodules

Inner forearm, lateral thigh

Azithromycin 500 mg on day one, then 250 mg for four days

• Under 45.5 kg: 10 mg/kg on day one, then 5 mg/kg for four days

Alternative 7-10 day courses

Clarithromycin 500 mg BID

• If under 45.5 kg, 15 to 20 mg/kg divided in two doses

Rifampin 300 mg BID

• In children, I0 mg/kg BID

Trimethoprim-sulfamethoxazole DS one tablet BID

 In children, trimethoprim 8 mg/kg per day, sulfamethoxazole 40 mg/kg per day, divided in two doses

Ciprofloxacin 500 mg BID if age > 17 years

- In vitro sensitivities do not correlate well with in vivo
- Critical to use 2 antibiotics in serious infections

• "Our findings...could explain relapses observed using azithromycin [alone] for the treatment of B. henselae infections"

- In vitro sensitivities do not correlate well with in vivo
- Critical to use 2 antibiotics in serious infections

• "Our findings...could explain relapses observed using azithromycin [alone] for the treatment of B. henselae infections"

Double or Triple Intracellular agents

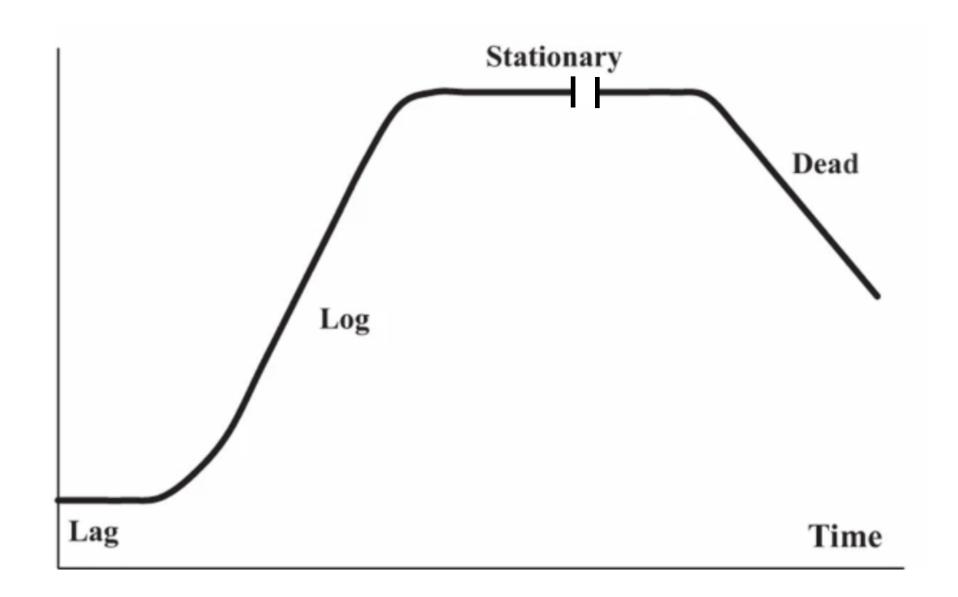
Duration of treatment is unclear

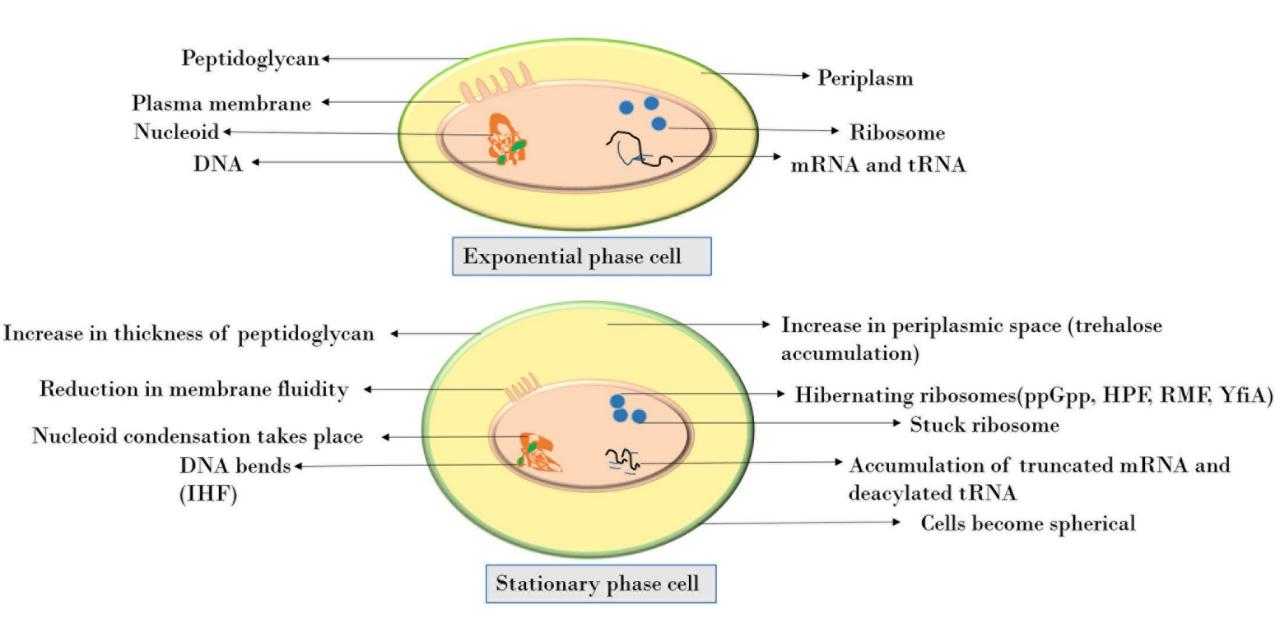
- High relapse rate if less than 15 days
- Recommend 3-4 months
 - If HIV + and bacillary angiomatosis or bacillary peliosis

Treat until symptom free, and then...

Reassess

- Resolved with treatment, returned after discontinuing
 - Unlikely "post-whatever syndrome"
 - Very unlikely to be completely new, unrelated illness


Treat until symptom free, and then...


Reassess

- Resolved with treatment, returned after discontinuing
 - Unlikely "post-whatever syndrome"
 - Very unlikely to be completely new, unrelated illness

Relapse is known to occur after treatment withdrawal

Retreatment is often necessary

Article

Identification of FDA-Approved Drugs with Activity against Stationary Phase Bartonella henselae

Tingting Li ^{1,2}, Jie Feng ^{1,3}, Shuzhen Xiao ^{1,4}, Wanliang Shi ¹, David Sullivan ¹ and Ying Zhang ^{1,*}

Table 3. Evaluation of select drug candidates against a 5-day old stationary phase *B. henselae* culture at their respective maximum drug concentration in serum (C_{max}) values.

Antimionalial Acomto	Con. of Drug	CFU per mL after Drug Exposure		
Antimicrobial Agents	Exposure (μg/mL)	1 Day	3 Day	
Control *	0	$3.67 \pm 2.08 \times 10^7$	$1.33 \pm 0.11 \times 10^6$	
Rifampin	10	$2.10 \pm 0.85 \times 10^5$	$8.67 \pm 0.46 \times 10^3$	
Azithromycin	2	$3.00 \pm 1.00 \times 10^6$	$5.33 \pm 2.31 \times 10^5$	
Doxycycline	5	$5.33 \pm 1.53 \times 10^6$	$1.00 \pm 0.40 \times 10^6$	
Erythromycin	1	$3.00 \pm 1.00 \times 10^6$	$1.00 \pm 0.20 \times 10^6$	
Ciprofloxacin	5	$1.77 \pm 0.45 \times 10^6$	$2.60 \pm 1.40 \times 10^5$	
Gentamicin	10	$1.00 \pm 0.17 \times 10^4$	0	
Streptomycin	25	$7.33 \pm 2.08 \times 10^4$	0	
Amikacin	100	$2.00 \pm 1.73 \times 10^3$	0	
Methylene blue	5	0	0	
Daptomycin	60	0	0	
Pyrvinium pamoate	5	0	0	
Clotrimazole	25	$2.00 \pm 1.73 \times 10^3$	0	
Nitroxoline	5	$3.47 \pm 0.31 \times 10^6$	$2.00 \pm 0.00 \times 10^2$	
Nitrofurantoin	1	$3.00 \pm 0.00 \times 10^5$	$9.33 \pm 1.15 \times 10^3$	
Clinafloxacin	5	$9.00 \pm 1.00 \times 10^5$	$5.33 \pm 3.06 \times 10^4$	
Clofoctol	35	$2.20 \pm 0.72 \times 10^6$	$1.00 \pm 0.53 \times 10^5$	
Miconazole	6	$2.07 \pm 0.38 \times 10^6$	$2.13 \pm 0.31 \times 10^5$	
Pentamidine	0.5	$2.00 \pm 1.00 \times 10^6$	$2.00 \pm 0.00 \times 10^5$	
Aprepitant	2	$1.20 \pm 0.17 \times 10^7$	$9.00 \pm 2.65 \times 10^5$	
Colistin	2	$7.33 \pm 1.15 \times 10^6$	$6.67 \pm 3.06 \times 10^5$	
Amifostine	15	$3.00 \pm 1.00 \times 10^6$	$5.33 \pm 2.23 \times 10^5$	
Berberine	1	$3.40 \pm 0.27 \times 10^6$	$1.00 \pm 0.00 \times 10^6$	

^{*} The beginning CFU for the 5-day old stationary phase *B. henselae* culture was about 2×10^8 CFU/mL.

RESEARCH ARTICLE

Open Access

Effect of different drugs and drug combinations on killing stationary phase and biofilms recovered cells of *Bartonella henselae* in vitro

Xiaoyan Zheng^{1,2}, Xiao Ma², Tingting Li², Wanliang Shi² and Ying Zhang^{2*}

Abstract

Background: Bartonella henselae is a Gram-negative bacterium transmitted to humans by a scratch from cat in the presence of ectoparasites. Humans infected with *B. henselae* can result in various clinical diseases including local lymphadenopathy and more serious systemic disease such as persistent bacteremia and endocarditis. The current treatment of persistent *B. henselae* infections is not very effective and remains a challenge. To find more effective treatments for persistent and biofilm *Bartonella* infections, in this study, we evaluated a panel of drugs and drug combinations based on the current treatment and also promising hits identified from a recent drug screen against stationary phase and biofilm recovered cells of *B. henselae*.

Results: We evaluated 14 antibiotics and 25 antibiotic combinations for activity against stationary phase *B. henselae* (all antibiotics were at 5 µg/ml) and found that ciprofloxacin, gentamicin, and nitrofurantoin were the most active agents, while clofazimine and miconazole had poor activity. Drug combinations azithromycin/ciprofloxacin, azithromycin/methylene blue, rifampin/ciprofloxacin, and rifampin/methylene blue could rapidly kill stationary phase *B. henselae* with no detectable CFU after 1-day exposure. Methylene blue and rifampin were the most active agents against the biofilm *B. henselae* after 6 days of drug exposure. Antibiotic combinations (azithromycin/ciprofloxacin, azithromycin/methylene blue, rifampin/ciprofloxacin, rifampin/methylene blue) completely eradicated the biofilm *B. henselae* after treatment for 6 days.

Conclusions: These findings may facilitate development of more effective treatment of persistent *Bartonella* infections in the future.

Keywords: Bartonella henselae, Stationary phase, Biofilm, Antimicrobial activity, Drug combination

Most Active Single Agents

Ciprofloxacin

Gentamicin

Nitrofurantoin

stationary phas	e B. henselae 1	
Drugs (5 μg/ml)		CFU per mL after drug exposure
Drug free control		$2.8 \pm 0.4 \times 10^{10}$
Amikacin		$8.0 \pm 0.2 \times 10^4$
Azithromycin		$6.5 \pm 0.4 \times 10^5$
Cefuroxime		$2.2 \pm 0.2 \times 10^5$
Ciprofloxacin		$6.0 \pm 0.1 \times 10^2$
Clofazimine		$1.6 \pm 0.2 \times 10^{10}$
Daptomycin		$5.0 \pm 0.2 \times 10^7$
Disulfiram		$1.0 \pm 0.2 \times 10^7$
Doxycycline		$8.0 \pm 0.3 \times 10^6$
Gentamicin		$5.0 \pm 0.2 \times 10^2$
Methylene blue		$3.2 \pm 0.4 \times 10^4$
Miconazole		$1.5 \pm 0.1 \times 10^{10}$
Nitrofurantoin		$2.8 \pm 0.1 \times 10^2$

 $6.0 \pm 0.3 \times 10^5$

 $3.5 \pm 0.2 \times 10^6$

Table 2 Effect of drugs or drug combinations on survival of

Rifampin

SXT

Most Active Single Agents

Ciprofloxacin

Gentamicin

Nitrofurantoin

Table 2 Effect of drugs or drug combinations on survival of stationary phase *B. henselae* ^a

Drugs (5 μg/ml)	CFU per mL after drug exposure
Drug free control	$2.8 \pm 0.4 \times 10^{10}$
Amikacin	$8.0 \pm 0.2 \times 10^4$
Azithromycin	$6.5 \pm 0.4 \times 10^5$
Cefuroxime	$2.2 \pm 0.2 \times 10^5$
Ciprofloxacin	$6.0 \pm 0.1 \times 10^2$
Clofazimine	$1.6 \pm 0.2 \times 10^{10}$
Daptomycin	$5.0 \pm 0.2 \times 10^7$
Disulfiram	$1.0 \pm 0.2 \times 10^7$
Doxycycline	$8.0 \pm 0.3 \times 10^6$
Gentamicin	$5.0 \pm 0.2 \times 10^2$
Methylene blue	$3.2 \pm 0.4 \times 10^4$
Miconazole	$1.5 \pm 0.1 \times 10^{10}$
Nitrofurantoin	$2.8 \pm 0.1 \times 10^2$
Rifampin	$6.0 \pm 0.3 \times 10^5$
SXT	$3.5 \pm 0.2 \times 10^6$

Most Active Combos – Stationary Forms

Azithromycin+Amikacin	$4.3 \pm 0.3 \times 10^5$
Azithromycin+Rifampin	$2.0 \pm 0.2 \times 10^5$
Azithromycin+Cefuroxime	$5.2 \pm 0.2 \times 10^5$
Azithromycin+Ciprofloxacin	0
Azithromycin+Clofazimine	$2.2 \pm 0.3 \times 10^6$
Azithromycin+Daptomycin	$1.8 \pm 0.1 \times 10^5$
Azithromycin+Disulfiram	$1.4 \pm 0.2 \times 10^5$
Azithromycin+Doxycycline	$1.2 \pm 0.3 \times 10^6$
Azithromycin+Gentamicin	$5.1 \pm 0.3 \times 10^4$
Azithromycin+Methylene blue	0
Azithromycin+Miconazole	$1.3 \pm 0.2 \times 10^5$
Azithromycin+Nitrofurantoin	$4.0 \pm 0.3 \times 10^5$
Azithromycin+SXT	$8.5 \pm 0.1 \times 10^6$

Rifampin+ Amikacin	1	$.6 \pm 0.1 \times 10^{5}$
Rifampin+Cefuroxime	2	$.2 \pm 0.1 \times 10^4$
Rifampin+Ciprofloxacin	0	
Rifampin+Clofazimine	2	$.8 \pm 0.1 \times 10^{5}$
Rifampin+Daptomycin	1	$.2 \pm 0.1 \times 10^6$
Rifampin+Disulfiram	8	$.5 \pm 0.2 \times 10^{5}$
Rifampin+Doxycycline	1	$.2 \pm 0.1 \times 10^6$
Rifampin+Gentamicin	1	$.6 \pm 0.1 \times 10^4$
Rifampin+Methylene blue	0	
Rifampin+ Miconazole	8	$0.0 \pm 0.3 \times 10^{5}$
Rifampin+Nitrofurantoin	1	$.2 \pm 0.1 \times 10^{5}$
Rifampin+SXT	1	$.6 \pm 0.1 \times 10^{5}$

Most Active Combos – Stationary Forms

Azithromycin+Amikacin	$4.3 \pm 0.3 \times 10^5$	Rifampin+ Amikacin	$1.6 \pm 0.1 \times 10^5$
Azithromycin+Rifampin	$2.0 \pm 0.2 \times 10^5$	Rifampin+Cefuroxime	$2.2 \pm 0.1 \times 10^4$
Azithromycin+Cefuroxime	$5.2 \pm 0.2 \times 10^5$	Rifampin+Ciprofloxacin	0
Azithromycin+Ciprofloxacin	0	Rifampin+Clofazimine	$2.8 \pm 0.1 \times 10^5$
Azithromycin+Clofazimine	$2.2 \pm 0.3 \times 10^6$	Rifampin+Daptomycin	$1.2 \pm 0.1 \times 10^6$
Azithromycin+Daptomycin	$1.8 \pm 0.1 \times 10^5$	Rifampin+Disulfiram	$8.5 \pm 0.2 \times 10^5$
Azithromycin+Disulfiram	$1.4 \pm 0.2 \times 10^5$	Rifampin+Doxycycline	$1.2 \pm 0.1 \times 10^6$
Azithromycin+Doxycycline	$1.2 \pm 0.3 \times 10^6$	Rifampin+Gentamicin	$1.6 \pm 0.1 \times 10^4$
Azithromycin+Gentamicin	$5.1 \pm 0.3 \times 10^4$	Rifampin+Methylene blue	0
Azithromycin+Methylene blue	0	Rifampin+ Miconazole	$8.0 \pm 0.3 \times 10^5$
Azithromycin+Miconazole	$1.3 \pm 0.2 \times 10^5$	Rifampin+Nitrofurantoin	$1.2 \pm 0.1 \times 10^5$
Azithromycin+Nitrofurantoin	$4.0 \pm 0.3 \times 10^5$	Rifampin+SXT	$1.6 \pm 0.1 \times 10^5$
Azithromycin+SXT	$8.5 \pm 0.1 \times 10^6$		

Most Active Single Agents - Biofilms

Table 3 Evaluation of select drug candidates against *B. henselae* biofilm-recovered cells after drug exposure at different times

Drugs (5 μg/ml)	CFU per mL after drug exposure			
	2 day	4 day	6 day	
Drug free control	$1.3 \pm 0.2 \times 10^{10}$	$1.8 \pm 0.2 \times 10^{10}$	$2.6 \pm 0.3 \times 10^{10}$	
Azithromycin	$4.5 \pm 0.3 \times 10^9$	$5.2 \pm 0.3 \times 10^9$	$9.3 \pm 0.2 \times 10^{5}$	
Cefuroxime	$5.6 \pm 0.3 \times 10^9$	$2.3 \pm 0.2 \times 10^9$	$1.7 \pm 0.1 \times 10^6$	
Ciprofloxacin	$3.2 \pm 0.3 \times 10^8$	$2.5 \pm 0.3 \times 10^8$	$5.1 \pm 0.3 \times 10^2$	
Daptomycin	$9.8 \pm 0.2 \times 10^9$	$3.4 \pm 0.3 \times 10^9$	$2.7 \pm 0.2 \times 10^6$	
Disulfiram	$6.1 \pm 0.3 \times 10^9$	$4.6 \pm 0.3 \times 10^9$	$3.8 \pm 0.3 \times 10^7$	
Doxycycline	$5.3 \pm 0.3 \times 10^9$	$3.8 \pm 0.1 \times 10^9$	$6.2 \pm 0.3 \times 10^5$	
Gentamicin	$6.2 \pm 0.3 \times 10^9$	$5.8 \pm 0.2 \times 10^9$	$8.1 \pm 0.3 \times 10^2$	
Methylene blue	$8.9 \pm 0.4 \times 10^9$	$6.8 \pm 0.2 \times 10^9$	$2.3 \pm 0.2 \times 10^{2}$	
Miconazole	$9.8 \pm 0.3 \times 10^9$	$2.2 \pm 0.1 \times 10^{10}$	$1.6 \pm 0.1 \times 10^{10}$	
Nitrofurantoin	$4.3 \pm 0.1 \times 10^9$	$3.6 \pm 0.2 \times 10^9$	$2.8 \pm 0.2 \times 10^9$	
Rifampin	$5.6 \pm 0.2 \times 10^9$	$4.8 \pm 0.3 \times 10^9$	$3.2 \pm 0.2 \times 10^2$	
SXT	$7.8 \pm 0.3 \times 10^9$	$6.4 \pm 0.3 \times 10^9$	$2.7 \pm 0.2 \times 10^9$	
Azithromycin+Ciprofloxacin	$4.1 \pm 0.2 \times 10^9$	$5.8 \pm 0.3 \times 10^6$	0	
Azithromycin+Methylene blue	$6.8 \pm 0.2 \times 10^9$	$5.2 \pm 0.3 \times 10^5$	0	
Rifampin+Ciprofloxacin	$7.6 \pm 0.2 \times 10^9$	$4.7 \pm 0.2 \times 10^9$	0	
Rifampin+Methylene blue	$5.9 \pm 0.1 \times 10^9$	$4.8 \pm 0.2 \times 10^9$	0	

Most Active Combos - Biofilms

Table 3 Evaluation of select drug candidates against *B. henselae* biofilm-recovered cells after drug exposure at different times

Drugs (5 μg/ml)	CFU per mL after drug exposure		
	2 day	4 day	6 day
Drug free control	$1.3 \pm 0.2 \times 10^{10}$	$1.8 \pm 0.2 \times 10^{10}$	$2.6 \pm 0.3 \times 10^{10}$
Azithromycin	$4.5 \pm 0.3 \times 10^9$	$5.2 \pm 0.3 \times 10^9$	$9.3 \pm 0.2 \times 10^5$
Cefuroxime	$5.6 \pm 0.3 \times 10^9$	$2.3 \pm 0.2 \times 10^9$	$1.7 \pm 0.1 \times 10^6$
Ciprofloxacin	$3.2 \pm 0.3 \times 10^8$	$2.5 \pm 0.3 \times 10^8$	$5.1 \pm 0.3 \times 10^2$
Daptomycin	$9.8 \pm 0.2 \times 10^9$	$3.4 \pm 0.3 \times 10^9$	$2.7 \pm 0.2 \times 10^6$
Disulfiram	$6.1 \pm 0.3 \times 10^9$	$4.6 \pm 0.3 \times 10^9$	$3.8 \pm 0.3 \times 10^7$
Doxycycline	$5.3 \pm 0.3 \times 10^9$	$3.8 \pm 0.1 \times 10^9$	$6.2 \pm 0.3 \times 10^5$
Gentamicin	$6.2 \pm 0.3 \times 10^9$	$5.8 \pm 0.2 \times 10^9$	$8.1 \pm 0.3 \times 10^2$
Methylene blue	$8.9 \pm 0.4 \times 10^9$	$6.8 \pm 0.2 \times 10^9$	$2.3 \pm 0.2 \times 10^2$
Miconazole	$9.8 \pm 0.3 \times 10^9$	$2.2 \pm 0.1 \times 10^{10}$	$1.6 \pm 0.1 \times 10^{10}$
Nitrofurantoin	$4.3 \pm 0.1 \times 10^9$	$3.6 \pm 0.2 \times 10^9$	$2.8 \pm 0.2 \times 10^9$
Rifampin	$5.6 \pm 0.2 \times 10^9$	$4.8 \pm 0.3 \times 10^9$	$3.2 \pm 0.2 \times 10^2$
SXT	$7.8 \pm 0.3 \times 10^9$	$6.4 \pm 0.3 \times 10^9$	$2.7 \pm 0.2 \times 10^9$
Azithromycin+Ciprofloxacin	$4.1 \pm 0.2 \times 10^9$	$5.8 \pm 0.3 \times 10^6$	0
Azithromycin+Methylene blue	$6.8 \pm 0.2 \times 10^9$	$5.2 \pm 0.3 \times 10^5$	0
Rifampin+Ciprofloxacin	$7.6 \pm 0.2 \times 10^9$	$4.7 \pm 0.2 \times 10^9$	0
Rifampin+Methylene blue	$5.9 \pm 0.1 \times 10^9$	$4.8 \pm 0.2 \times 10^9$	0

Most Active Combos - Biofilms

Drugs (5 μg/ml)	CFU per mL after drug exposure			
	2 day	4 day	6 day	
Drug free control	$1.3 \pm 0.2 \times 10^{10}$	$1.8 \pm 0.2 \times 10^{10}$		
Azithromycin	$4.5 \pm 0.3 \times 10^9$	$5.2 \pm 0.3 \times 10^9$	9.3 ± 0.2 × 10	
Cefuroxime	$5.6 \pm 0.3 \times 10^9$	$2.3 \pm 0.2 \times 10^9$	$1.7 \pm 0.1 \times 10^6$	
Ciprofloxacin	$3.2 \pm 0.3 \times 10^8$	$2.5 \pm 0.3 \times 10^8$	$5.1 \pm 0.3 \times 10^2$	
Daptomycin	$9.8 \pm 0.2 \times 10^9$	$3.4 \pm 0.3 \times 10^9$	$2.7 \pm 0.2 \times 10^6$	
Disulfiram	$6.1 \pm 0.3 \times 10^9$	$4.6 \pm 0.3 \times 10^9$	$3.8 \pm 0.3 \times 10^7$	
Doxycycline	$5.3 \pm 0.3 \times 10^9$	$3.8 \pm 0.1 \times 10^9$	$6.2 \pm 0.3 \times 10^5$	
Gentamicin	$6.2 \pm 0.3 \times 10^9$	$5.8 \pm 0.2 \times 10^9$	$8.1 \pm 0.3 \times 10^2$	
Methylene blue	$8.9 \pm 0.4 \times 10^9$	$6.8 \pm 0.2 \times 10^9$	$2.3 \pm 0.2 \times 10^{2}$	
Miconazole	$9.8 \pm 0.3 \times 10^9$	$2.2 \pm 0.1 \times 10^{10}$	$1.6 \pm 0.1 \times 10^{10}$	
Nitrofurantoin	$4.3 \pm 0.1 \times 10^9$	$3.6 \pm 0.2 \times 10^9$	$2.8 \pm 0.2 \times 10^9$	
Rifampin	$5.6 \pm 0.2 \times 10^9$	$4.8 \pm 0.3 \times 10^9$	$3.2 \pm 0.2 \times 10^2$	
SXT	$7.8 \pm 0.3 \times 10^9$	$6.4 \pm 0.3 \times 10^9$	$2.7 \pm 0.2 \times 10^9$	
Azithromycin+Ciprofloxacin	$4.1 \pm 0.2 \times 10^9$	$5.8 \pm 0.3 \times 10^6$	0	
Azithromycin+Methylene blue	$6.8 \pm 0.2 \times 10^9$	$5.2 \pm 0.3 \times 10^5$	0	
Rifampin+Ciprofloxacin	$7.6 \pm 0.2 \times 10^9$	$4.7 \pm 0.2 \times 10^9$	0	
Rifampin+Methylene blue	$5.9 \pm 0.1 \times 10^9$	$4.8 \pm 0.2 \times 10^9$	0	

Methylene Blue

Dosing:

- 25-50mg BID
- Benefits at 4-8mg daily
- No need for liposomal

Methylene Blue

MAO-I

- Haven't seen Serotonin Syndrome with oral
 - Reported with IV dosing

Caution combining with amphetamines — Risk of hypertensive crisis

Blue urine

- Stains toilet if not on top of it
- Dysuria, particularly in males

Methylene Blue

Where it shines:

Cognitive issues

Air hunger

Clotrimazole

Oral

Adults

- 10mg four times a day
- 20mg sustained release capsule BID

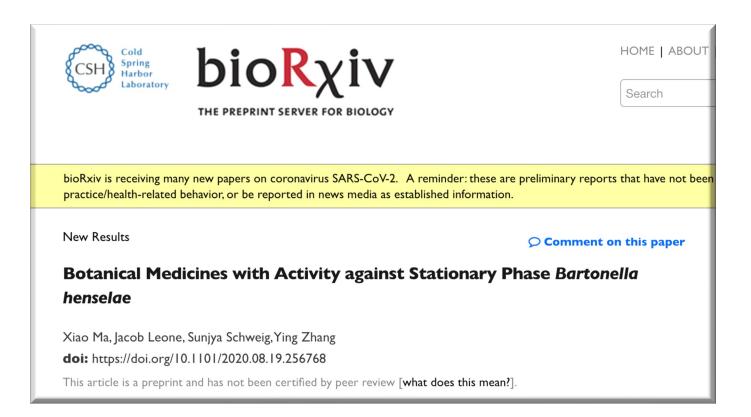
Children

- Liquid 10mg three times a day
- 10mg three times a day
- 10-15mg sustained release capsule BID

Clotrimazole

Elevated transaminases

Clotrimazole


Where it shines:

Yeast

Aflatoxins

PANS

Stationary Forms & Biofilms

Cryptolepis sanguinolenta

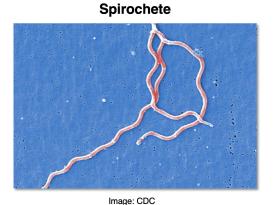
Juglans nigra

Polygonum cuspidatum

Scutellaria baicalensis

Scutellaria barbata

Medications


Cefuroxime

Minocycline

Tinidazole

Hydroxychloroquine?

Borrelia burgdorferi

Cyst/Round Body

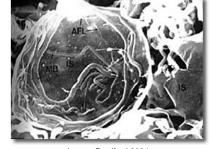
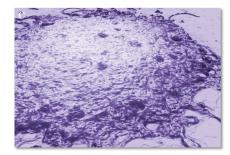



Image: Bradford 2004

Biofilm

Thomas A. Moorcroft, DO

Image: Shapi 2012

Herbs

Cryptolepis
Polygonum cuspidatum

Scutellaria baicalensis

Biofilm

Evidence-based herbals
Liposomal botanicals
Liposomal Artemisinin
Enzymes

What about if Babesia microti?

- Consider Atovaquone, azithromycin, artemisinin, tafenoquine
- Think about this in the beginning
 - Inform your choice between a tetracycline and a macrolide

What about if Babesia duncani?

- Medications???
- Focus on herbals
- Maybe add azithromycin and atovaquone/proguanil

What about if Babesia odecoilei?

- Research??
- Clinical experience consider
 - Atovaquone, artemisia annua or derivative, tafenoquine, azithromycin

What about other Babesia spp?

- Evidence-based herbals seem to help across the board
- AND, more infections appear to also need antibiotic and Rx anti-parasitic treatments

- Think double intracellular coverage
 - What about other pathogens?
 - Borrelia burgdorferi or miyamotoi, Babesia spp., Mycoplasma, Chlamydiphilia etc

- Think double intracellular coverage
 - What about other pathogens?
 - Borrelia burgdorferi or miyamotoi, Babesia spp., Mycoplasma, Chlamydiphilia etc
- Think evidence-based herbals

- Think double intracellular coverage
 - What about other pathogens?
 - Borrelia burgdorferi or miyamotoi, Babesia spp., Mycoplasma, Chlamydiphilia etc
- Think evidence-based herbals
- Stationary forms
 - Methylene blue
 - Clotrimazole
 - especially if concurrent aflatoxins or other mycotoxins

- Evidence-based herbals
- Nitrofurantoin?

What about if Bartonella henselae?

- Evidence-based herbals
- Nitrofurantoin?

What about if another Bartonella?

Clinical judgement

In the end, Treat the patient in front of you

In the end, Treat the patient in front of you

Follow the evidence as much as it is clinically useful

In the end, Treat the patient in front of you

Follow the evidence as much as it is clinically useful

Innovate clinically based upon experience and new research

In the end, Treat the patient in front of you

Follow the evidence as much as it is clinically useful

Innovate clinically based upon experience and new research

Always assess and reassess

Not only the patient

In the end, Treat the patient in front of you

Follow the evidence as much as it is clinically useful

Innovate clinically based upon experience and new research

Always assess and reassess

- Not only the patient
- But your diagnosis

Herbs & Pathogens

	Borrelia burgdorferi	Babesia microti	Babesia duncani	Bartonella henselae
Cryptolepis sanguinolenta	G/S	G	G	S
Scutellaria baicalensis	G/S	?	G	S
Polygonum cuspidatum	G/S	?	+/	S
Uncaria tomentosa	S	?*	-	+/
Artemisia annua	S	G	+/	+/
Juglans nigra	S/? G	?	-	S

G = Growing form. S = Stationary or non-growing form, including round bodies and biofilms

- Significant discrepancy exists in herbal research results
- Many commonly used herbs don't do in vitro what many claim they do
- Inhibition of less than 60% not included
- For B. henselae stationary forms, herbs listed did better than commonly used antibiotics
- Cryptolepis No regrowth of B. burgdorferi or B. duncani

^{*}effective against divergens, but not tested in other human Babesias

Summary

Tick-borne co-infections are frequent and the increased risk of patient co-infection from tick bite

This impacts presentation of symptoms and laboratory testing.

An understanding of log and stationary bacterial growth as well as other bacterial persister forms is critical in treating patients

• Each phase requires different treatment approaches

Most up to date, evidence-based growing, stationary and persister coinfection treatments

Herbal Dosing

Cryptolepis sanguinolenta

• Tincture (1:5 extract) - Start with 5 drops three times a day, slowly work up to 40 drops three times a day

Scutellaria baicalensis

- I capsule (459mg) three times a day
- Tincture (1:5 extract) Start with 5 drops three times a day, slowly work up to 40 drops three times a day

Herbal Dosing

Artemisia annua

- Artemisinin (liposomal) 50mg 2 capsules BID
- Whole herb I capsule (300mg) TID
- ? 5 days per week, 3 weeks per month vs continuous

Polygonum cuspidatum (Japanese knotweed root)

- Whole herb (capsules) 1500mg daily
- Tincture (1:5 extract) Start with 5 drops three times a day, slowly work up to 40 drops three times a day

Herbal Dosing

Uncaria tomentosa (Cat's claw inner bark)

- Capsules: I500mg daily
- Tincture (1:5 extract) Start with 5 drops three times a day, slowly work up to 40 drops three times a day

Houttuynia cordata

• Tincture (1:5 extract) - Start with 5 drops three times a day, slowly work up to 40 drops three times a day

Children's Herbal Dosing

Child's Weight 150 lbs.

Child's dose
total # drops or mg
(of the adult dose)

Amblyomma americanum (Lone Star ticks)

Nymph

Adult Male

Adult Female

Ehrlichiosis, Rocky Mountain Spotted Fever, Q fever, STARI borreliosis

Dermacentor variabilis (American Dog ticks)

Rocky Mountain Spotted Fever, Tularemia

Top 5 Herbs for Tx Lyme www.OriginsOfHealth.com/Connect